Gọi UCLN (a2+a+1, a2+a-1)=d
=>\(\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}}\)=> a2+a+1-(a2+a-1)\(⋮\)d=>2\(⋮\)d(đến đây mình nghĩ đề sai thì phải)
Gọi d là ước chung của a2 + a + 1 và a2 + a - 1 ( d \(\in\)N)
\(\Rightarrow\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}\Rightarrow\left[\left(a^2+a+1\right)-\left(a^2+a-1\right)\right]⋮d}\)
=> ( a2 + a + 1 - a2 - a + 1 ) \(⋮\)d
=> 2 \(⋮\)d => d \(\in\)Ư(2)
Mà a2 + a + 1 = a(a+1) + 1
a và a + 1 là 2 STNLT nên tích a(a+1) là số chẵn => a(a+1) + 1 lẻ => a2 + a + 1 lẻ
Mà d là ước của a2 + a + 1 => d lẻ
Vậy d \(\in\)Ư(2) = { 1 ; 2 } . d là số lẻ => d = 1
=> a2 + a + 1 và a2 + a - 1 nguyên tố cùng nhau.