ta có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{7^2}< \frac{1}{6.7}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{7^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{6.7}\)
mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}< 1\)ta có A<B mà B<1
suy ra A<1(đpcm)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}\)
Ta thấy: \(\frac{1}{2^2}< 1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{5^2}< \frac{1}{4}-\frac{1}{5}\)
\(\frac{1}{6^2}< \frac{1}{5}-\frac{1}{6}\)
\(\frac{1}{7^2}< \frac{1}{6}-\frac{1}{7}\)
Cộng theo vế của các biểu thức trên ta đc:
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(\Leftrightarrow\) \(A< 1-\frac{1}{7}< 1\) (đpcm)