1 2 2 + 1 3 2 + 1 4 2 + ... + 1 9 2 > 1 2.3 + 1 3.4 + 1 4.5 + ... + 1 9.10 = 2 5
1 2 2 + 1 3 2 + 1 4 2 + ... + 1 9 2 < 1 1.2 + 1 2.3 + 1 3.4 + 1 8.9 = 8 9
1 2 2 + 1 3 2 + 1 4 2 + ... + 1 9 2 > 1 2.3 + 1 3.4 + 1 4.5 + ... + 1 9.10 = 2 5
1 2 2 + 1 3 2 + 1 4 2 + ... + 1 9 2 < 1 1.2 + 1 2.3 + 1 3.4 + 1 8.9 = 8 9
cho 1/2^2 + 1/3^2 + 1/4^2 + ....+ 1/9^2 . chứng tỏ 2/5 < S < 8/9
Chứng tỏ rằng : \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{60^2}< \dfrac{4}{9}\)
chứng tỏ rằng:(1/2 mũ 2+1/3 mũ 2 +1/3 mũ 2+1/4 mũ 2+1/5 mũ 2+1/6 mũ 2+1/7 mũ 2 +1/8 mũ 2+1/9 mũ 2+1/10 mũ 2)<1
Bài 1:Chứng tỏ rằng:B=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)\(\dfrac{1}{8^2}\)<1
Bài 2:Chứng tỏ rằng:E=\(\dfrac{3}{4}\)+\(\dfrac{8}{9}\)+\(\dfrac{15}{16}\)+...+\(\dfrac{2499}{2500}\)<1
Bài 3:Chứng tỏ rằng:1<\(\dfrac{2011}{2020^2+1}\)+\(\dfrac{2021}{2020^2+2}\)+\(\dfrac{2021}{2020^3+3}\)+...+\(\dfrac{2021}{2020^3+2020}\)< 2
CHo A=1/3^2+1/4^2+1/5^2+...+1/50^2. Chứng tỏ rằng 1/4<A<4/9
Chưng tỏ
a, S= 1/2^2+1/3^2+...+1/9^2
Chứng tỏ 2/5<S<8/9
b, 1/2-1/4+1/8-1/16+1/32-1/64<1/3
c, 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
1.
a, chứng tỏ
1/2^2+1/3^2+...+1/2017^2<1
b,1/4+1/16+1/36+1/64+1/100+1/144+...+1/10000<1/2
c,cho A=1/2^2+1/3^2...+1/9^2
chứng tỏ:2/5<a<8/9
d,chứng tỏ:A=1+1/2^2+...+1/100^2<1/3/4
e,chứng tỏ:1/2^2+1/3^2+...+1/100^2<1
a)\(\frac{7}{x}<\frac{x}{4}<\frac{10}{x}\)
b) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\). Chứng tỏ: \(\frac{8}{9}>A>\frac{2}{5}\)
S=1/2^2 + 1/3^2 + 1/4^2 +...+ 1/9^2. Chứng minh rằng 2/5 < S <8/9
\(choS=1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}+2^{11}\)
chứng tỏ rằng S chia hết cho 3