Chứng tỏ rằng: 1-1/2+1/3-1/4+...+1/99-1/200=1/101+1/102+...+1/199+1/200
Chứng tỏ rằng : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
Chứng tỏ rằng: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
Help me
Chứng tỏ: 1-1/2+1/3-1/4+...+1/99-1/100=1/101+1/102+1/199+1/200
chứng tỏ rằng 1-1/2+1/3-1/4+...+1/99-1/200=1/101+1/102+...+1/200
chứng tỏ rằng 1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
Chứng tỏ rằng: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
Cho P=1-1/2+1/3-1/4+1/5-1/6+........+1/199-1/200
a/ Chứng tỏ rằng P=1/101+1/102+....+1/200
b/Giải bài toán trên theo trường hợp tổng quát
Hãy chứng tỏ rằng : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)