Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
AKARI GAMING™

chứng tỏ phân số\(\frac{3n+2}{2n+1}\)tối giản với mọi số tự nhiên n.

AKARI GAMING™
23 tháng 4 2019 lúc 20:00

gọi d=ƯCLN(3n+2;2n+1)

lập luận d = 1

kết luận\(\frac{3n+1}{2n+1}\)tối giản

Lê Tài Bảo Châu
23 tháng 4 2019 lúc 20:01

Gọi \(\left(3n+2;2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản với mọi STN n

Huỳnh Quang Sang
23 tháng 4 2019 lúc 20:02

Gọi d là ƯCLN\((3n+2,2n+1)\)  \((d\inℕ^∗)\)

Ta có : \((3n+2)⋮d,(2n+1)⋮d\)

\(\Rightarrow\left[2(3n+2)\right]⋮d,\left[3(2n+1)\right]⋮d\)

\(\Rightarrow\left[6n+4\right]⋮d.\left[6n+3\right]⋮d\)

\(\Rightarrow\left[6n+4\right]-\left[6n+3\right]⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d\in\left\{1;-1\right\}\)

Mà \(d\inℕ^∗\)nên d = 1

Vậy : \(\frac{3n+2}{2n+1}\)là phân số tối giản \(\forall n\inℕ\)


Các câu hỏi tương tự
bùi thanh my
Xem chi tiết
Pham Huy Bach
Xem chi tiết
Phạm Tường Nhật
Xem chi tiết
thúy nga
Xem chi tiết
Trần Thị Phương Uyên
Xem chi tiết
Nguyễn Thị Ngọc Yến TT
Xem chi tiết
Phạm Chí Bảo
Xem chi tiết
khuyên
Xem chi tiết
Nguyễn Ngọc Mai
Xem chi tiết