gọi d=ƯCLN(3n+2;2n+1)
lập luận d = 1
kết luận\(\frac{3n+1}{2n+1}\)tối giản
Gọi \(\left(3n+2;2n+1\right)=d\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản với mọi STN n
Gọi d là ƯCLN\((3n+2,2n+1)\) \((d\inℕ^∗)\)
Ta có : \((3n+2)⋮d,(2n+1)⋮d\)
\(\Rightarrow\left[2(3n+2)\right]⋮d,\left[3(2n+1)\right]⋮d\)
\(\Rightarrow\left[6n+4\right]⋮d.\left[6n+3\right]⋮d\)
\(\Rightarrow\left[6n+4\right]-\left[6n+3\right]⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d\in\left\{1;-1\right\}\)
Mà \(d\inℕ^∗\)nên d = 1
Vậy : \(\frac{3n+2}{2n+1}\)là phân số tối giản \(\forall n\inℕ\)