Đề: Chứng minh N = \(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2010^2}
Đề: Chứng minh N = \(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2010^2}
n=1/22+1/32+1/42+...+1/20092+1/20102
chứng tỏ n<1
So sánh P và Q biết : P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010+2011+2012/ 2011 +2012+2013
Chứng tỏ N < 1 với N = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)
cho A1-1/2^2-1/3^2-1/4^2-1/5^2...-1/2010^2. chứng tỏ A>1/2014
Chứng tỏ rằng: 1/22+1/32+1/42+...+1/20102<1
chứng tỏ rằng A<1 biết
A= 1/2^2 + 1/3^2 + 1/4^2 + .... + 1/2010^2 + 1/2011^2 + 1/2012^2 <1
Bài 1
cho M=1+3+3^2+...+3^118+3^119
N=1/2^2+1/3^2+1/4^2+...+1/2009^2+1/2010^2
chứng tỏ rằng :
a)M chia hết cho 13
b)N<1
mình đang cần gấp,xin các bạn giải hộ mình
mình xẽ tick
Cho biểu thức:
A=1+2+2^2+2^3+2^4+.........+2^2009
Chứng tỏ (A+1)×5^2010 là một số chính phương?
Cho biểu thức : A= 1+2+2^3 + 2^4 + ...+2^2009
Chứng tỏ (A+1) . 5^2010 là một số chính phương
Chứng tỏ rằng A<1 biết
A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{2010^2}+\frac{1}{2011^2}+\frac{1}{2012^2}<1\)