Cho \(a+b+c+d\ne0\)và \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\).
Tính giá trị biểu thức \(A=\frac{a+c}{b+d}+\frac{a+b}{c+d}+\frac{b+c}{a+d}\)
a) cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
i) \(\frac{a}{a+b}\frac{c}{c+d}\)
ii)\(\frac{a-b}{c-d}=\frac{a+c}{b+d}.\)
b) Cho: \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\). Chứng minh: \(\frac{a}{b}=\frac{c}{d}.\)
Cho và . Giá trị của biểu thức là
Cho các số nguyên a, b, c, d ( với d>c>b>a>0) và \(\frac{a}{b}=\frac{c}{d}\)
Chứng tỏ rằng a+d>b+c
Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\).Chứng minh tồn tại tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\)( giả sử các biểu thức đều có nghĩa)
Cho các số a , b , c , d khác 0 thỏa mãn \(\frac{a}{5b}=\frac{b}{5c}=\frac{c}{5d}=\frac{d}{5a}\) và a +b +c +d \(\ne\)0
Tính giá trị biểu thức S = \(\frac{a^{1000}}{d^{1009}}.\frac{b^{1019}}{c^{1010}}\)
Bài 1. Cho a, c ∈ N và b,d ∈ N* thỏa mãn
\(\frac{a}{b}>\frac{c}{d}.\)Chứng tỏ rằng \(\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)
Bài 2. Cho số x = \(\frac{a-2020}{1963}\)( a ∈ Z). Tìm a để:
a) x < 0 b) x > 0 c) x = 0
Bài 3. Tìm các số tự nhiên n để phân số \(\frac{n-7}{11n+2}\) là phân số tối giản.
Bài 4. Tìm số tự nhiên n nhỏ nhất để các phân số sau là các phân số tối giản
\(\frac{1}{n+4},\frac{2}{n+5},\frac{3}{n+6},...,\frac{100}{n+103}\)
Câu 1: Cho dãy tỉ số bằng nhau:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tính M = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Câu 2: Chứng minh rằng:
A= 75.(42004+42003+.....+42+4+1)+25 là số chia hết cho 100