Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoàn Trần Thanh Ngân

chứng tỏ A=n2-1 CHIA HẾT CHO 6 với n ko chia hết cho 3 và n lẻ

Trần Thị Loan
1 tháng 12 2015 lúc 5:10

A = n- 1 

- Vì n lẻ nên nlẻ => n - 1 chẵn => A chia hết cho 2

- Vì n không chia hết cho 3 nên n chia cho 3 dư 1 hoặc dư 2

+ Nếu n chia cho 3 dư 1 thì n = 3k + 1 => n2 = (3k + 1)= (3k + 1).(3k + 1) = 9k+ 6k + 1 = 3(3k2 + 2k) + 1 => n2 - 1 = 3(3k+ 2k) chia hết cho 3 => A chia hết cho 3

+ Nếu n chia cho 3 dư 2 thì n = 3k + 2 => n2 = (3k + 2)= (3k + 2).(3k + 2) =  9k+ 12k + 4 = 3.(3k+ 4k + 1) + 1 

=> n- 1 = 3.(3k+ 4k + 1)  => A chia hết cho 3

Vậy A chia hết cho 2 và 3 nên A chia hết cho 6

giải

A = n- 1 

Vì n lẻ nên nlẻ => n - 1 chẵn => A chia hết cho 2

Vì n không chia hết cho 3 nên n chia cho 3 dư 1 hoặc dư 2

 Nếu n chia cho 3 dư 1 thì n = 3k + 1 => n2 = (3k + 1)= (3k + 1).(3k + 1) = 9k+ 6k + 1 = 3(3k+ 2k) + 1 => n2 - 1 = 3(3k+ 2k) chia hết cho 3 => A chia hết cho 3

 Nếu n chia cho 3 dư 2 thì n = 3k + 2 => n2 = (3k + 2)= (3k + 2).(3k + 2) =  9k+ 12k + 4 = 3.(3k+ 4k + 1) + 1 

=> n- 1 = 3.(3k+ 4k + 1)  => A chia hết cho 3

Vậy A chia hết cho 2 và 3 nên A chia hết cho 6

 hok tốt


Các câu hỏi tương tự
Trần Long Thăng
Xem chi tiết
vu dieu linh
Xem chi tiết
vu dieu linh
Xem chi tiết
Sawada Tsunayoshi
Xem chi tiết
Vũ Thành Dương
Xem chi tiết
Lê Anh Tú
Xem chi tiết
Hồng Hà Thị
Xem chi tiết
Nguyễn Gia Như
Xem chi tiết
huyweegm
Xem chi tiết