chứng minh bất đẳng thức 2a^3+8a<=a^4+16
Chứng tỏ biểu thức B= a4 - 2a3 + 2a2 - 2a+ 5 luôn dương với mọi giá trị của a
a^4+16>=2a^3+8a
Chứng minh rằng a^2 + 16 =2a^ + 8a
Cho biểu thức: A=[(16−a)a/(a2−4)+(2a+3)/(2−a)−(2−3a)/(a+2)]∶(a2+1)/(a3+4a2+4a)+1/(a2+1)
a) Rút gọn A
b) Tính giá trị của A khi a thỏa mãn a2 + 5a + 4 = 0
c) Chứng tỏ rằng A luôn không âm với mọi a thỏa mãn điều kiện xác định
trừ phân thức :
\(\frac{a^2-5a+4}{16-a^2}-\frac{2a}{2a^2+8a}\)
Chứng minh rằng:
1) (2n – 3)^2 – 9 chia hết cho 4 với mọi số nguyên n
2) a^4 - 2a^3 – a^2 + 2a chia hết cho 24 với a là số nguyên
Chứng minh rằng :
1.(2n-3)2-9 chia hết cho 4 với mọi số nguyên n
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
3.a4-2a3-a2+2a chia hết cho 24 với a là số nguyên
4.n3-n chia hết cho 6 với mọi số nguyên n
chứng minh cái đống này giúp mình với mai mình nộp rồi
a)(a^4+b^4)(a^6+b^6)<_2(a^10+b^10)
b)a^2/4+2b^2+2c^2+1>=ab-ac+2bc+2b
c)a^2+4b^2+4c^2+4ac>=4ab+8bc
d)4a^4+5a^2>=8a^3+2a-1