2A=2+2223+...+230
2A-A=(2+2223+...+231)-(1+2+2223+...+230)
A=231-1
A+1=231-1+1
A+1=2^31
=> A+1 là 1 lũy thừa
Ta có : A = \(1+2+2^2+2^3+...+\)\(2^{30}\)
=> 2A = \(2+2^2+2^3+...+2^{30}+2^{31}\)
=> 2A-A=A = \(2^{31}-1\)
=> A+1 = \(2^{31}\)Là 1 lũy thừa => đpcm
Ta có :
\(A=1+2+2^2+2^3+...+2^{30}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{31}\)
\(2A-A=2^{31}-1\)
\(A=2^{31}-1\Leftrightarrow A+1=2^{31}\)(đpcm )
\(Ta\)\(có:\)
\(A=1+2+2^2+2^3+...+2^{30}\)
\(=>2A=2\left(1+2+2^2+2^3+...+2^{30}\right)\)
\(=>2A=2+2^2+2^3+2^4+...+2^{31}\)
\(=>2A-A=2^{31}-1\)
\(=>A=2^{31}-1\)
\(=>A+1=2^{31}\)
Vậy A + 1 là một lũy thừa nếu A = 1 + 2 + 22 + 23 +...+ 230