chứng minh 2015^2017+2017^2015 chia hết cho 2016
giúp minh với !!!!!!!!!!!!!!
CMR: (2015^2017+2017^2015) chia hết cho 2016
1. Chứng minh rằng: 52017 + 52015 chia hết cho 13.
2. Cho a,b,c thuộc Z, biết: a2014 + b2015 + c2016 chia hết cho 6.
Chứng minh: a2016 + b2017 + c2018 chia hết cho 6.
=)) Mem nào giúp mình đc k?? Cảm ơn nhiều.
cho a,b là hai số dương thỏa mãn a^2015+b^2015=a^2016+b^2016=a^2017+b^2017. Tinh P =20a+8b+2017
Chứng minh rằng:2011^3+2013^3+2017^3+2019^3 chia hết cho 2015
cho a,b,c thoả mãn a^2016+b^2016+c^2016=a^2017+b^2017+c^2017=1. Tính B=a^2015+b^2016+c^2017
x+5/2015+x+4/2016+x+3/2017=x+2015/5+x+2016/4+x+2017/3
Cho A= 1/2015 +2/2016+3/2017+...+2014/4028 -2014
B = 1/2015+1/2016+1/2017+...+1/4028.
Tính : A/B =?
cho P=1^2017 +2 ^2017 + ... + 2016^2017 ; Q = 1+2+3+...+2016. Chứng minh rằng P chia hết cho Q