\(A=x^2+y^2+z^2+\frac{29}{2}>2x-4y+6z\)
\(A\Leftrightarrow\left(x^2-2x+1\right)+\left(z^2-6z+9\right)+\left(y^2+4y+4\right)+\frac{1}{2}>0\)
\(A\Leftrightarrow\left(x-1\right)^2+\left(z-3\right)^2+\left(y+2\right)^2+\frac{1}{2}>0\)
Ta có \(\left(x-1\right)^2+\left(z-3\right)^2+\left(y+2\right)^2\ge0\)
\(\Rightarrow A\ge\frac{1}{2}\left(>0\right)\)( Luôn đúng) => Đpcm