chứng minh A = (n+ 1)4 + n4 +1 chia hết cho số chính phương khác 1 với n thuộc N
Chứng minh rằng số A = (n+1)4+n4+1 chia hết cho một số chính phương khác 1 với mọi n nguyên dương.
1 nếu m, n là các số tự nhiên thỏa mãn 2m^2+m=3n^2+n thì m- n là số nguyên tố
2 chứng minh với n thuộc Z chẵn và n >4 thì n^4-4n^3-16n^2+16 chia hết cho 383
3 cho a, b là số chính phương lẻ. chứng minh (a-1((b-1) chia hết cho 192
4 tìm nghiệm nguyên tố của phương trình x^2- 2y= 1
CMR a/ Tích của một số chính phương với 1 số tự nhiên đứng liền trước nó chia hết cho 12.
b/ n^5-5n^3+4n chia hết cho 120 với n thuộc z.
c/ n^3+3n^2-n-3 chia hết cho 48 với mọi n lẻ, n thuộc z.
Cmr A=(n+1)^4+n^4+1 chia hết cho 1 số chính phương khác 1vs mọi n là số tự nhiên
Bài 1: Tìm n thuộc N để:
A= n^2+9 là số chính phương
B= n^2+2014 là số chính phương
C= n(n+3) là số chính phương
Bài 2: CMR: a^2-1 chia hết cho 24 với a là số nguyên tố >3
Bài 3: CMR: n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
CMR: với mọi n thuộc Z : A(n)=n(n^2+1)(n^2+4) chia hết cho 5( Bằng phương pháp xét mọi số dư)
Chứng minh rằng :Nếu 2n+1 và 3n+1(n thuộc N) đều là các số chính phương thì n chia hết cho 40
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố