ta có :
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\cdot\left(n+1\right)}-\frac{n}{n\cdot\left(n+1\right)}=\frac{n+1-n}{n\cdot\left(n+1\right)}=\frac{1}{n\cdot\left(n+1\right)}\)
\(\Rightarrowđpcm\)
ta có :
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\cdot\left(n+1\right)}-\frac{n}{n\cdot\left(n+1\right)}=\frac{n+1-n}{n\cdot\left(n+1\right)}=\frac{1}{n\cdot\left(n+1\right)}\)
\(\Rightarrowđpcm\)
Chứng minh: 1/n - 1/(n+1) = 1/n(n+1)
Đọc cho dễ hiểu: chứng minh: 1 phần n trừ 1 phần n cộng 1 bằng 1 phần n nhân n cộng một
ai nhanh tay cho một tick
chứng minh : 1/ n (n+1) (n+2) = 1/ 2 ( 1/ n(n+1) - 1/(n+1 ) (n+2) )
chứng minh 1/n(n+1)=1/n-1/n+1
chứng minh rằng:1/n-1/n+1=1/n.(n+1)
Chứng minh rằng 2/(n+1).(n+2)=1/n.(n+1)-1/(n+1).(n+2)
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
chứng minh A = 1/1.2+1/2.3+1/3.4+....+1/n(n+1)=n/n+1 (n thuộc n*)
Chứng minh rằng: 1/n+1 + 1/n+3 +......+ 1/n+n > 1/2 ( với mọi n e N*)
Với n thuộc N* cho C=1/n+1+1/n+2+...+1/n+n. Chứng minh rằng 1/2<C