Chứng minh:
1 phần tan x+1 cộng 1 phần cos x+1 bằng 1
Chứng minh:
\(\frac{1+tan^2\left(x\right)}{1-tan^2\left(x\right)}=\frac{1}{cos\left(x\right)}\)
Chứng minh các đẳng thức sau với mọi góc nhọn x, y:
a/ cos4x - sin4x = cos2x - sin2x
b/ \(\frac{1}{1+\tan x}+\frac{1}{1+\cot x}=1\)1
c/ cos2x - cos2y = sin2y - sin2x = \(\frac{1}{1+\tan^2x^2}-\frac{1}{1+\tan^2y}\)
d/ \(\frac{1+sin^2x}{1-sin^2x}=1+2tan^2x\)
Chứng minh đẳng thức:
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}=\sin x+\cos x\)
Chứng minh rằng với x >0 và x # 1 thì căn x phần căn x - 1 - 1 phần căn x - căn x = căn x + 1 phần căn x
chứng minh đẳng thức:
a) sinx / cosx + sinx - cosx / cosx - sinx = 1 + cot2a / 1 - cot2a
b) ( cosx + tanx / 1 + cosx.cotx)2 = cos2x + tan2x / 1 + cos2x. cot2x
Chứng minh rằng :
a)\(\sin2x=2\cos x.\sin x\)
b)\(\cos2x=\cos^2x-\sin^2x\)
c)\(\tan2x=\frac{2\tan x}{1-\tan^2x}\)
chứng minh
(sin x + cos x )2 = 1 + 2 . sin x . cos x
sin2a = tg2a / 1+ tg2a
Cho tập X = { 1; 2; ... ; 2015 } và 2 tập con A, B có tổng phần tử lớn hơn 2016. Chứng minh rằng tồn tại ít nhất 1 phần tử của tập A và 1 phần tử của tập B sao cho có tổng bằng 2016.