Để chứng minh n2+n+1 không thể là số chính phương ta sẽ chứng minh n2+n+1 không chia hết cho 9
Giả sử n2+n+1 chia hết cho 9
<=> n2+n+1=9k (k thuộc N)
<=> n2+n+1-9k=0 (1)
\(\Delta=1^2-4\left(1-9k\right)=36k-3=3\left(12k-1\right)\)
Ta thấy \(\Delta⋮3\)và không chia hế cho hết cho 9 nên không là số chính phương => pt (1) trên không thể nghiệm nguyên
Vậy n2+n+1 không chia hết cho 9 hay n2+n+1 không là số chính phương