Chứng tỏ rằng vói mọi n thuộc N thì (n+1) và (n+2) là hai số nguyên tố cùng nhau.
Chứng minh rằng : với mọi n thuộc N thì 2n+1 và 2n+2 nguyên tố cùng nhau
chứng minh rằng với mọi n thuộc N thì 2n+1 và 4n+3 là hai số nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Chứng minh rằng:với mọi n thuộc N thì hai số:
a) 3n + 4 và 2n + 3 là hai số nguyên tố cùng nhau
b) 5n +1 và 6n + 1 là hai số nguyên tố cùng nhau
giải giúp tôi với
chứng minh n(n+1)/2 và 2n+1 nguyên tố cùng nhau với mọi n thuộc N
Chứng minh: n(n+1) / 2 và 2n+1 nguyên tố cùng nhau với mọi n thuộc N
chứng minh n(n+1) / 2 và 2n+1 nguyên tố cùng nhau với mọi n thuộc N
CHỨNG MINH RẰNG VỚI n THUỘC N THÌ 2 SỐ 2n+1 VÀ 3n+1 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU