giả sử d là ucln của 4n+1 và 6n+1
=>4n+1 chia hết cho d=>12n+3 chia hết cho d
6n+1 chia hết cho d=>12n+2 chia hết cho d
=>12+3-12-2:d
=>1:d
=>d=1
=>ucln của 4n+1 và 6n+1 là 1(điều phải chứng minh)
gọi ƯC(4n+1;6n+1) là d
suy ra 4n+1 chia hết cho d
suy ra 6(4n+1)chia hết cho d
suy ra 24n+6 chia hết cho d
lại có 6n+1 chia hết cho d
suy ra 4(6n+1) chia hết cho d
suy ra 24n+4 chia hết cho d
mà 24n+6 chia hết cho d
suy ra 24n+6-(24n+4)chia hết cho d
suy ra 2 chia hết cho d
suy ra d=Ư(2)={1;2;-1;-2}
vì n thuộc N nên n={1;2)
nếu d=2 suy ra 4n+1 chia hết cho2
vì 4n chia hết cho 2 và 1 ko chia hết cho 2
suy ra 4n+1 ko chia hết cho 2
suy ra d ko thể =2
suy ra d=1
suy ra ƯCLN(4n+1;6n+1)=1
vậy bài toán đc chứng minh