Gọi ba số lẻ đó lần lượt là: a, a+1, a+2 (a \(\in\)N)
Tổng ba số đó là: a+(a+1)+(a+2)
= a+a+1+a+2
= 3a +3
Vì \(3⋮3\Rightarrow3a⋮3\)
Vậy trong ba số le liên tiếp có 1 số chia hết cho 3
-Gọi ba số tự nhiên liên tiếp lần lượt là : n ; n + 1 ; n + 2 ( n N )
-Nếu n chia hết cho 3 thì bài toán luôn đúng ( 3k chia hết cho 3 )
-Nếu n : 3 dư 1 thì n = 3k + 1 ( k N )
=> n + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3
-Nếu n : 3 dư 2 thì n = 3k + 2 ( k N )
=> n + 1 = 3k + 1 + 2 = 3k + 3 chia hết cho 3
Vậy trong 3 số tụ nhiên liên tiếp luôn có một số chia hết cho 3