Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vua rắc rối

Chứng minh tổng các lập phương của 3 số nguyên liên tiếp chia hết cho 9

Cố lên Tân
25 tháng 6 2015 lúc 21:08

 Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1) 
****chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9 
(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a 
= 3a(a^2 + 2) = 3a(a^2 - 1) + 9a 
= 3(a - 1)a(a + 1) + 9a 
vì tíck của 3 sôd tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9 
Mặt khác 9a chia hết cho 9 nên 
==>3(a - 1)a(a + 1) + 9a 

Đinh Tuấn Việt
25 tháng 6 2015 lúc 21:13

Oggy    copy

๖ۣۜNɦσƙ ๖ۣۜTì
27 tháng 6 2019 lúc 10:22

 Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1) 
****chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9 
(a - 1)^3 + a^3 + (a + 1)^3

=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1

= 3a^3 + 6a 
= 3a(a^2 + 2)

= 3a(a^2 - 1) + 9a 
= 3(a - 1)a(a + 1) + 9a 
vì tíck của 3 sôd tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9 
Mặt khác 9a chia hết cho 9 nên 
=>3(a - 1)a(a + 1) + 9a 
hay ta đc điều phải chứng minh 

Trịnh Bảo Ngọc
23 tháng 4 2020 lúc 14:43

tui lớp 6 đã học cái này rùi

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Tất Anh Quân
Xem chi tiết
nguyen my my
Xem chi tiết
Đỗ Văn Nam
Xem chi tiết
~ ~ ~Bim~ ~ ~♌ Leo ♌~...
Xem chi tiết
Hàn Vũ Nhi
Xem chi tiết
MAI HUONG
Xem chi tiết
♥➴Hận đời FA➴♥
Xem chi tiết
huongkarry
Xem chi tiết
huongkarry
Xem chi tiết