Chứng minh rằng tồn tại một số tự nhiên co 4 chữ số tận cùng là 2002 chia hết cho 2001.
Dirichlet ấy các mem. Giải giúp nhé !!!!
Dùng nguyên lí Dirichle để giải các bài tập sau:
1) Viết 20 số tự nhiên vào 20 tấm bìa. CMR: Ta có thể chọn 1 hay nhiều tấm bìa để tổng các số đó chia hết cho 20
2) CMR: tồn tại 1 số tự nhiên chia hết cho 17
a) Gồm toàn chữ số 1 và chữ số 0
b) Gồm toàn chữ số 1
3) CMR: Tồn tại số tự nhiên k để 3k có 3 chữ số tận cùng là 001
4) CHo 51 số tự nhiên khác 0 và không vượt quá 100. CMR:
a) Mỗi số đều viết được 2k.b(k;b thuộc N, b lẻ, k có thể = 0). Xác định khoảng giá trị của k và b
b) Tồn tại 2 số mà số này là bội của số kia
1) CMR tồn tại 1 số gồm toàn chữ số 6 chia hết cho 2003
2)CMR tồn tại hay không 1 số tự nhiên só tận cùng là 2002 chia hết cho 2003
3) Cho 2001 số bất kì.CMR có thể chonk 1 hoặc 1 số số mà tổng của chúng chia hết cho 2001
4) Trong 1 tam giác đều cạnh là 1.Ta đặt 17 điểm kể cả trên các cạnh.CMR tồn tai 2 điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 1/4
a) CMR: có thể tìm được 1 số k sao cho 1983k-1 chia hết cho 105
b) CMR: tồn tại số tự nhiên chỉ toàn số 2 và chia hết cho 1991
chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab+4 là số chính phương
jup mik vs các bạn
Cho 2 số A(n) và B(n) như sau:
A = 22n + 1 + 2n+1 + 1
B = 22n + 1 – 2n + 1 + 1
Chứng minh rằng với mọi số tự nhiên n, tồn tại một và duy nhất một
trong hai số A(n) hoặc B(n) chia hết cho 5.
Giúp mk gấp !!!
Giải giúp mik bài toán: biết số tự nhiên a gồm 31 chữ số 1, số tự nhiên b gồm 38 chữ số 1. Chứng minh ab -2 Chia hết cho 3. (Đang cần gấp, ghi luôn cách giải nha. Cảm ơn trước)
câu 1 :chứng minh : nn-n^2+n-1 chia hết cho (n-1)^2 với n là số nguyên lớn hơn 1
câu 2 : chứng minh với n lẻ n thuộc N* thì 1^n+2^n+3^n+...+n^n chia hết cho 1+2+3+...+n
câu3: có tồn tại số tự nhiên n để n^2+3n+39 và n^2+n+37 đồng thời chia hết cho 49 không?
1.Cho 5 số tự nhiên bất kì.CMR trong 5 số đó tồn tại 3 số có tổng chia hết cho 3
2.Cho 3 số nguyên tố lớn hơn 3.CMR tồn tại 2 số có tổng hoặc hiệu chia hết cho 2
3.CMR trong 12 số tự nhiên tùy ý, bao giờ ta cũng chọn đc 2 số mà hiệu của chúng chia hết cho 11