Cho a>0, b>0, c>0, chứng minh rằng\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Bài 1: Chứng minh rằng (x, y, z > 0)
Bài 2: Cho a + b + c > 0; abc > 0; ab + bc + ca > 0. Chứng minh rằng a > 0; b > 0; c > 0.
Bài 3: Chứng minh rằng (a, b, c > 0)
Bài 4: Chứng minh rằng (a + b) (b + c) (c + a) 8abc (a, b, c 0)
Bài 5: Chứng minh rằng (a, b, c, d 0)
Bài 6: Cho x, y, z > 0 thỏa mãn .
Chứng minh .
Bài 7: Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng (a+b-c) (b+c-a) (c+a-b) ab.
Bài 8: Cho x, y, z > 0; x+y+z = 1. Chứng minh rằng .
Bài 9: Cho 2 số có tổng không đổi. Chứng minh rằng tích của chúng lớn nhất khi và chỉ khi 2 số đó bằng nhau.
Bài 10: Cho a, b, c > 0. Chứng minh rằng
Cho \(\frac{a}{c}=\frac{a-b}{b-c}\); a#0 ; c#0; a-b#0; b-c#0.
Chứng minh: \(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\)
Please help me !!!!!!!!!!!!!!!!!!!!!!!!!
Cho x>0; y>0; z>0 và\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\).
Chứng minh rằng \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\).
a ) Cho x>0 , y>0 , z>0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
Chứng minh rằng : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Cho 3 số x,y,z (x #0, y#0, z#0, x+y+z # 0 ) thỏa mãn điều kiện :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\). Chứng minh trong ba số luôn tồn tại một cặp số đối nhau.
1. cho \(x^2+xa+b=0\). Và x0 là nghiệm phương trình. Chứng minh: \(x_{0^2\le a^2+b^2+1}\)
2. Cho \(a_1=1;a_2=1+\frac{1}{2};a_3=1+\frac{1}{2}+\frac{1}{3};....;a_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\)
Chứng minh:
\(\frac{1}{a_{1^2}}+\frac{1}{2a_{2^2}}+\frac{1}{3a_{3^2}}+....+\frac{1}{na_{n^2}}< 2\)
Cho ba số thực a, b, c khác 0 thỏa\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0.\)Chứng minh rằng \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Cho a>0; b>0; c>0. Chứng minh bất đẳng thức
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)