a, chứng minh công thức :
\(\forall n\ge1\) ta có : \(\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n}+1\right)}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
1) Chứng minh: \(2\sqrt{n}-3< \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}-2\forall n\ge2\)
2) Thu gọn: \(A=5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\right)^2\)
Chứng minh:
a)\(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
b)\(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\forall a,b>0\)
c) Với a>b>0 và m>n (m,n \(\in\)N) chứng minh:
\(\frac{a^m-b^m}{a^m+b^m}>\frac{a^n-b^n}{a^n+b^n}\)
Với số tự nhiên n , \(n\ge3\)
Đặt \(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
Chứng minh rằng \(S_n< \frac{1}{2}\)
Cho dãy \(\left(u_n\right)\)xác định: \(\hept{\begin{cases}u_1=3\\u_{n+1}=\frac{1}{2}u_n+\frac{n^2}{4n^2+a}\sqrt{u_n^2+3}\forall n\ge1\end{cases}}\)
a) Với a=0, bằng quy nạp hãy chứng minh \(0< u_{n+1}< u_n,\forall n\ge1\)
b) Với a=1, bằng quy nạp hãy chứng minh \(1-\frac{2}{n}< u_n,\forall n\ge2\)
Câu 4:
a. Chứng minh rằng: \(\sqrt{22-12\sqrt{2}}\) + \(\sqrt{6+4\sqrt{2}}\) = 4\(\sqrt{2}\)
b. Chứng minh rằng: \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\) = \(\sqrt{n+1}\) - \(\sqrt{n}\)
Chứng minh bằng phương pháp quy nạp:
\(x_i>1,\forall i=1,2,.....,n\)thì \(\frac{1}{1+x_i}+\frac{1}{1+x_2}+.....................+\frac{1}{1+x_n}\ge\frac{n}{1+\sqrt[n]{x_1x_2.........x_n}}\)
Chứng minh bất đẳng thức
Với n thuộc N, chứng minh \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n+1}}\)
Sử dụng kết quả trên, chứng minh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}< 2.\sqrt{2012}\)
Chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với n thuộc N*
1.Chứng minh rằng: \(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}>\frac{9}{4}\)
2.Chứng minh rằng với mọi n thuộc N và n>2 thì nn+1>(n+1)n