\(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)
\(a^2+b^2\ge\dfrac{a^2+2ab+b^2}{2}\)
\(2a^2+2b^2\ge a^2+2ab+b^2\)
\(a^2-2ab+b^2\ge0\)
\(\left(a-b\right)^2\ge0\left(lđ\right)\)
\(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)
\(a^2+b^2\ge\dfrac{a^2+2ab+b^2}{2}\)
\(2a^2+2b^2\ge a^2+2ab+b^2\)
\(a^2-2ab+b^2\ge0\)
\(\left(a-b\right)^2\ge0\left(lđ\right)\)
B1, cho a, b không âm. chứng minh
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)(bất đẳng thức Cô-si cho hai số không âm).
Dấu bằng xảy rakhi nào?
B2, với a\(\ge\)0 và b\(\ge\)0. chứng minh
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
Bài 1: Giải phương trình :
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)
Bài 2 : cho các số không âm a,b,c . Chứng minh :
a, \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
c, \(a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
d, \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
chứng minh hằng đẳng thức sau với b\(\ge0\), a\(\ge\sqrt{b}\) :
\(\sqrt{a\pm\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}\)
Cho a, b, c > 0. Chứng minh rằng: \(T=\dfrac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\dfrac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\dfrac{c^2}{\sqrt{3c^2+8a^2+14ac}}\ge\dfrac{a+b+c}{5}\)
câu 1: Cho a,b,c là các số không âm thỏa a+b+c=3.chứng minh
\(\dfrac{a^2}{a+b^2}+\dfrac{b^2}{b+c^2}+\dfrac{c^2}{c+a^2}\ge\dfrac{3}{2}\)
câu 2: cho a,b,c là 3 cạnh của 1 tam giác . chứng minh
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}+\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)
câu 3:tìm tất cả nghiệm nguyên dương của phương trình
xyz+xy+yz+xz+x+y+z=2015 thỏa \(x\ge y\ge z\ge8\)
cho a,b,b ≥0. Chứng minh rằng:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
Chứng minh rằng: \(\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{1}{2}\) với a, b là các số dương
Chứng minh rằng: a + b + \(\dfrac{1}{2}\) \(\ge\) \(\sqrt{a}+\sqrt{b}\)
Bài 1: Cho a, b, c ≥ 0
Chứng minh rằng: \(a^3+b^3+c^3\ge\dfrac{a^2b+b^2c+c^2a}{3}\)
Bài 2: Với a ≥0. Thì\(\sqrt[3]{a}+\sqrt[3]{a^2}\le1+a\)
Bài 3: Chứng minh rằng:\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge6\). Với x, y, z>0
Chứng minh \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\sqrt{2}\)