Bài 1: Cho a, b, c ≥ 0
Chứng minh rằng: \(a^3+b^3+c^3\ge\dfrac{a^2b+b^2c+c^2a}{3}\)
Bài 2: Với a ≥0. Thì\(\sqrt[3]{a}+\sqrt[3]{a^2}\le1+a\)
Bài 3: Chứng minh rằng:\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge6\). Với x, y, z>0
Chứng minh rằng: \(\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{1}{2}\) với a, b là các số dương
cho a,b,b ≥0. Chứng minh rằng:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
Cho a, b, c > 0. Chứng minh rằng: \(T=\dfrac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\dfrac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\dfrac{c^2}{\sqrt{3c^2+8a^2+14ac}}\ge\dfrac{a+b+c}{5}\)
cho a;b;c>0. chứng minh rằng \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}\)
Bài 1: Giải phương trình :
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)
Bài 2 : cho các số không âm a,b,c . Chứng minh :
a, \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
c, \(a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
d, \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
Chứng minh rằng: \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với a\(\ge\)0; a\(\ne\)1
Cho a,b ≥ 0 thỏa mãn :
\(\sqrt{a}+\sqrt{b}=1\). Chứng minh rằng:
\(ab\left(a+b\right)^2< \dfrac{1}{64}\)
B1, cho a, b không âm. chứng minh
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)(bất đẳng thức Cô-si cho hai số không âm).
Dấu bằng xảy rakhi nào?
B2, với a\(\ge\)0 và b\(\ge\)0. chứng minh
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)