Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngoc An Pham

Cho a,b ≥ 0 thỏa mãn :

\(\sqrt{a}+\sqrt{b}=1\). Chứng minh rằng:

\(ab\left(a+b\right)^2< \dfrac{1}{64}\)

Phạm Phương Anh
27 tháng 7 2018 lúc 21:28

Ta có:

\(\sqrt{a}+\sqrt{b}=1\)

\(\Leftrightarrow(\sqrt{a}+\sqrt{b})^2=1\)

\(\Leftrightarrow a+b+2\sqrt{ab}=1\)

\(\Leftrightarrow2\sqrt{ab}=1-\left(a+b\right)\)

\(\Leftrightarrow\sqrt{ab}=\dfrac{1-\left(a+b\right)}{2}\)

Lại có:

\(ab\left(a+b\right)^2=\left[\sqrt{ab}.\left(a+b\right)\right]^2=\left[\dfrac{1-\left(a+b\right)}{2}.\left(a+b\right)\right]^2=\left[\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}\right]^2\)

Ta thấy:

\(\left(a+b\right)-\left(a+b\right)^2=-\left[\left(a+b\right)^2-\left(a+b\right)\right]=-\left[\left(a+b\right)^2-\left(a+b\right)+\dfrac{1}{4}-\dfrac{1}{4}\right]=-\left(a+b-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(\Rightarrow\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}\le\dfrac{1}{8}\)

\(\Leftrightarrow[\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}]^2\le\dfrac{1}{64}\)

hay \(ab\left(a+b\right)^2\le\dfrac{1}{64}\) (đpcm)