Ta có:
\(\sqrt{a}+\sqrt{b}=1\)
\(\Leftrightarrow(\sqrt{a}+\sqrt{b})^2=1\)
\(\Leftrightarrow a+b+2\sqrt{ab}=1\)
\(\Leftrightarrow2\sqrt{ab}=1-\left(a+b\right)\)
\(\Leftrightarrow\sqrt{ab}=\dfrac{1-\left(a+b\right)}{2}\)
Lại có:
\(ab\left(a+b\right)^2=\left[\sqrt{ab}.\left(a+b\right)\right]^2=\left[\dfrac{1-\left(a+b\right)}{2}.\left(a+b\right)\right]^2=\left[\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}\right]^2\)
Ta thấy:
\(\left(a+b\right)-\left(a+b\right)^2=-\left[\left(a+b\right)^2-\left(a+b\right)\right]=-\left[\left(a+b\right)^2-\left(a+b\right)+\dfrac{1}{4}-\dfrac{1}{4}\right]=-\left(a+b-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}\le\dfrac{1}{8}\)
\(\Leftrightarrow[\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}]^2\le\dfrac{1}{64}\)
hay \(ab\left(a+b\right)^2\le\dfrac{1}{64}\) (đpcm)