Cho a,b,c,d thuộc N* và
M=a/a+b+c+b/a+b+d+c/b+c+d+d/a+c+d
Chứng tỏ rằng 1<M<2 từ đó suy ra M không phải là số tự nhiên
Cho a,b,c là các số nguyên dương .Chứng tỏ rằng:P=\(\frac{a}{a+b}\)+\(\frac{b}{b+c}\)+\(\frac{c}{c+a}\)không phải là số nguyên
chứng minh a/(a+b+c)+b/(a+b+d)+c/(b+c+d)+d/(a+c+d) không phải là 1 số tự nhiên
chứng minh a/(a+b+c)+b/(a+b+d)+c/(b+c+d)+d/(a+c+d) không phải là 1 số tự nhiên
chứng minh a/(a+b+c)+b/(a+b+d)+c/(b+c+d)+d/(a+c+d) không phải là 1 số tự nhiên
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
Cho a,b,c là các số tự nhiên khác 0. Chứng tỏ: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)không phải là số tự nhiên.
Cho a, b, c, d là các số tự nhiên khác 0. Chứng minh rằng :
\(A=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\)không phải là số tự nhiên
cho các số tự nhiên a,b,c khác 0,sao cho a^b +c,b^c+a,c^a+b đều là các số nguyên tố. Chứng minh rằng 2 trong các số đã cho phải bằng nhau