Chứng minh rằng:
a) Nếu \(\frac{a-c}{c-b}\)=\(\frac{a}{b}\)thì \(\frac{1}{c}\)=\(\frac{1}{2}\)\(\times\)(\(\frac{1}{a}\)\(+\)\(\frac{1}{b}\))
b)Nếu \(\frac{a}{b}\)=\(\frac{a}{d}\)thì\(\frac{2a^{^{2016}}}{2c^{ }^{2016}}\)\(+\)\(\frac{5b^{2016}}{5d^{ }^{2016}^{ }}\)=\(\frac{\left(a+b\right)^{2016}}{\left(c+d\right)^{2016}^{ }}\)
Giúp mình giải thêm 2 câu này với ạ!Mình cảm ơn nhiều ạ!
CHO A/B=C/D CHỨNG MINH RẰNG
\(\frac{\left(a-c\right)^4}{\left(b-d\right)^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)
\(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)
\(\frac{a^{2016}+c^{2016}}{b^{2016}+d^{2016}}=\frac{\left(a-c\right)^{2016}}{\left(b-d\right)^{2016}}\)
AI LÀM ĐƯỢC CÂU NÀO CŨNG ĐC,GIÚP MÌNH VS GẤP LẮM,THANKS
Chứng minh rằng nếu a/b=c/d\(a,\frac{a^2+2c^2}{b^2+2d^2}=\left(\frac{a+3c}{b+3d}\right)^2\) \(\frac{a^{2016}+3b^{2016}}{c^{2016}+3d^{2016}}=\left(\frac{a^2+2b^2}{c^2+2d^2}\right)^2\)
CHO CÁC SỐ DƯƠNG a,b,c khác d và \(\frac{a}{b}=\frac{c}{d}\)
CMR. \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-b^{2017}\right)^{2016}}\)
Các anh chị có thể giúp em giải bài toán này được ko ạ!
Bài toán1: Cho x/y=y/z=z/x. So sánh x,y,z biết x+y+z khác 0
Bài toán 2: Chứng minh răng:
a) nếu a+z/a-z=b+3/b-3 thì a/z=b/3
b) nếu a-c/c-b=a/b thì 1/c=1/2 (1/a+1/b)
c) nếu a/b=c/d thì 2a^2016 + 5b^2016/2c^2016+5d^2016 = (a+b)^2016/(c+d)^2016
bài 1 : Cho 3 số dương a,b,c
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\)
Tính \(M=\frac{21ab^{2015+12bc^{2015}+15ca^{2015}}}{a^{2016}+b^{2016}+c^{2016}}\)
Bài 2 : Cho 4a = 5b = 6c
Tính \(A=\frac{7a^2+8b^2-9c^2}{4a^2-3b^2+c^{2016}}\)
Bài 3 : Tìm a , b , c biết :
\(\left|\frac{a}{2}-\frac{b}{3}\right|+\left|\frac{b}{4}-\frac{c}{3}\right|+\left|a+b+c-58\right|=0\)
Ai giúp với thanks nhìu nhưng time của e chỉ có từ bây h đến 5h45 sáng mai thôi mong mọi người giúp đỡ :v !! ( làm dc bài nào cx dc ạ )
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
C = \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)= \(\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
các bạn bạn nào làm đc ý nào thì làm giúp đỡ mình một tí :
a/ cho các số thực a,b,c,d,e khác 0 thỏa mãn\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\)
cm rằng \(\frac{2a^2+3b^4+4c^4+5d^4}{2b^2+3c^4+4d^4+5e^4}=\frac{a}{e}\)
b/ cho a,b,c,d là các số thực dương thỏa mãn \(\frac{a}{b}< \frac{c}{d}\)
háy so sánh \(\frac{a}{b}\)với\(\frac{a+c}{b+d}\)
c/ cho các số nguyên dương a,b,c,d thỏa mãn a=b=c=2016
cm biểu thức sau ko phải là 1 số nguyên
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
thank các bạn nhiều
bạn nào làm đc mình tích cho nhé
Chứng minh rằng nếu\(B:\frac{a^{2016}+3b^{2016}}{c^{2016}+3d^{2016}}=\left(\frac{a^2+2b^2}{c^2+2d^2}\right)^2\)