Chứng minh rằng nếu:
\(\frac{a^4+b^4}{b^4+c^4}=\frac{2a^2b^2}{2b^2c^2}=\frac{4\left(a^2b^2+a^3.b+b^3.a\right)}{4\left(b^2c^2+b^3.c+c^3.b\right)}\)
thì\(b^2=ca\)
Bài 1: Cho \(\frac{2a+3b}{2c+3d}=\frac{5a+b}{5c+d}\) . Chứng minh rằng \(\left(\frac{2a+3c}{2b+3d}\right)^3=\frac{2a^3+3c^2}{2b^2+3d^2}\)
Bài 2:Tìm các số x,y biết \(\frac{x-3}{2y}=\frac{5y+6}{4}=\frac{3}{2y+2}\)
Cho a; b; c thỏa mãn:
\(\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2=\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\)
Chứng Minh rằng \(a=b=c\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\).Chứng minh rằng
\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
viết tổng thành tích:
a) \(6-3a-2b+ab\)
b) \(\left(2a-3\right)\left(1+a\right)-\left(1-a\right)\left(3+2a\right)\)
Cho 3 số dương a, b, c thỏa mãn : \(\frac{2a+b-c}{c}=\frac{2b+c-a}{a}=\frac{2c+a-b}{b}\)
Tính \(A=\frac{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}\)
Tính
a) \(3a^2b+\left(-3a^2b\right)+2a^2b-\left(-6a^2b\right)\)
b)\(\left(-4,2.f^2\right)+\left(-0,3.p^2\right)+0,5.p^2+3.p^2\)
Tính
a) \(3a^2b+\left(-3a^2b\right)+2a^2b-\left(-b.a^2b\right)\)
b)\(\left(-4,2.p^2\right)+\left(-0,3.p^2\right)+0,5.p^2+3.p^2\)
Cho \(\left(a+b\right)\left(2b-a-4\right)=\left(a-2b\right)\left(5-a-b\right)\). Tính \(\frac{2a^2-3b^2}{ab+b^2}\)