Chứng minh rằng : C=\(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}< \frac{1}{4}\)
Chứng minh rằng :
\(\frac{\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}}{\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2n-1}}< \frac{n}{n+1}\)
Bài 1 ; \(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+......+\frac{1}{1+2+3+4+.....+2010}\)
Bài 2 : CHỨNG MINH RẰNG: Với mọi số nguyên n>1 , ta có :
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+.....+\frac{1}{n^2+\left(n+1\right)^2}< \frac{9}{20}\)
Chứng minh rằng :\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+............+\frac{1}{n^2}< 2-\frac{1}{n}\)
Bài 1 :Chứng tỏ rằng
D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 2 :Chứng minh rằng \(\forall n\in Z\left(n\ne0,n\ne1\right)\)thì \(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)không phải số nguyên
Chứng minh rằng với số tự nhiên n > 2 thì \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)không là số tự nhiên
Chứng minh rằng: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\) ( không thuộc N) (với n thuộc n)
Chưng minh rằng :
\(\frac{1.2-1}{2\text{!}}+\frac{2.3-1}{3\text{!}}+\frac{3.\text{4}-1}{\text{4}\text{!}}+...+\frac{99.100-1}{100\text{!}}< 2\)
1.chứng minh rằng : \(\frac{1}{2}!+\frac{2}{3}!+\frac{3}{4}!+...+\frac{99}{100}!< 1\)
2. Chứng minh rằng :\(\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+...+\frac{99.100-1}{100}< 2\)