Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+..........+\frac{1}{80^2}\)
Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};................;\frac{1}{80^2}<\frac{1}{79.80}\)
=>A\(<\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{79.80}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..............+\frac{1}{79}-\frac{1}{80}\)
=\(1-\frac{1}{80}<1\)
Vậy A<1(đpcm)
tacó
1/2^2<1/1.2
1/3^2<1/2.3
1/4^2<1/3.4
.......………
1/80^2<1/79.80
->1/3^2+1/4^2+1/5^2+…+1/80^2< 1/1.2+ 1/2.3+1/3.4+1/4.5+..+1/79.80
->…................................................<1-1/2+1/2-1/3+1/3-1/4+…+1/79-1/80
->..................................................<1-1/80<1(₫pcm