Chứng minh rằng
\(\frac{1}{5}+\frac{1}{16}+\frac{1}{17}+...+\frac{1}{44}+\frac{1}{45}>\frac{5}{6}\)
So sanh A va B:
\(A=\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+...+\frac{1}{43}+\frac{1}{44}\)
\(B=\frac{5}{6}\)
a) \(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)
b) \(\frac{\frac{15}{12}+\frac{3}{4}-1}{3-\frac{5}{6}+\frac{2}{3}}+\frac{\frac{16}{5}+\frac{16}{7}-\frac{16}{9}}{\frac{17}{5}+\frac{17}{7}-\frac{17}{9}}\)
Chứng tỏ rằng: \(1< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+......+\frac{1}{16}+\frac{1}{17}< 2\)2
Chứng tỏ rằng: \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}
1. Tính tích
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{899}{900}\)
2 Chứng tỏ rằng:\(y=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}<2\)
3. tính nhanh \(y=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
4. Chứng minh rằng \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}<1\)
Chứng tỏ rằng:
\(\frac{1}{15}\) +\(\frac{1}{16}\) +\(\frac{1}{17}\) +...+\(\frac{1}{44}\) >\(\frac{5}{6}\)
so sánh:
1)\(\frac{10^{11}-1}{10^{12}-1}\)và \(\frac{10^{10}+1}{10^{11}+1}\)
2) \(\frac{54.107-53}{53.107-54}\)và \(\frac{135.269-133}{135.269+135}\)
3)\(\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+...+\frac{1}{43}+\frac{1}{44}và\frac{5}{6}\)
chứng minh rằng A =\(\frac{1}{4}.\frac{3}{6}.\frac{5}{8}.....\frac{43}{46}.\frac{45}{48}\)<\(\frac{1}{133}\)