a) Vì (-3) < (-2)
b) Vì -(3) < -(-9) {nhân với (-4)}
c) Vì (-3)>(-4)
a) Vì (-3) < (-2)
b) Vì -(3) < -(-9) {nhân với (-4)}
c) Vì (-3)>(-4)
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
Tìm x,biết
a)\(\left(x-2^2\right)-1=0\)
b)\(4-\left(x-2\right)^2=0\)
c)\(x^2-9-\dfrac{8}{9}x^2=0\)
d)\(\left(3x-2\right)^2-\left(2x+3\right)^2=5\left(x+4\right)\left(x-4\right)\)
\(\frac{2x+9}{\left(x+1\right)\left(x+8\right)}-\frac{2x+15}{\left(x+8\right)\left(x+7\right)}+\frac{2x+10}{\left(x+7\right)\left(x+3\right)}=\frac{4}{3}\)
Tính : \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)\left(7^4+\frac{1}{4}\right)\left(9^4+\frac{1}{4}\right)\left(11^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)\left(8^4+\frac{1}{4}\right)\left(10^4+\frac{1}{4}\right)\left(12^4+\frac{1}{4}\right)}\)
1. \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
2 . \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
3 . \(4\left(3x-2\right)-3\left(x-4\right)=7x+10\)
4. \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
Câu 1: Rút gọn các biểu thức sau:
1. \(\left(x+y-z\right)^2+\left(y-z\right)^2+2z\left(z-y\right)\)
2. \(\left(3x+4\right)^2+\left(x-4\right)^2+2\left(3x+4\right)\left(x-4\right)\)
3.\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
4. \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)\)
5. \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Câu 2: Tìm x
1. \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=1\)
2. \(\left(3x+1\right)^2+\left(5x-2\right)^2=34\left(x+2\right)\left(x-2\right)\)
3. \(\left(x+3\right)^2+\left(x-2\right)^2=2x^2\)
4. \(4x^2-9-x\left(2x-3\right)=0\)
5. \(4x^2-12x+9=0\)
Câu 3: Tìm GTNN
D = \(\left(2x-1\right)^2+\left(x+2\right)^2\)
Câu 4: Cho \(a^2+b^2+c^2=ab+bc+ac\) . Chứng minh rằng a=b=c
\(P=\left(\frac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)....\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right).....\left(23^4+4\right)}\right)\). Rút gọn biểu thức
BT7: Tính
\(3,C=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)...\left(5^{16}+1\right)\)
\(4,D=15\left(4^2+1\right)\left(4^4+1\right)...\left(4^{64}+1\right)\)
\(5,E=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{128}+1\right)+\left(5^{256}-1\right)\)
rút gọn bieu thuc P=\(\frac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+1\right)...\left(21^4+1\right)}{\left(3^4+1\right)\left(7^4+1\right)\left(11^4+1\right)...\left(23^4+1\right)}\)