Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Thùy Linh

Chứng minh rằng:

(7 mũ 0 +7 mũ 1 + 7 mũ 2 + ....... +7 mũ 2010 +7 mũ 2011) chia hết cho 8

Marry
3 tháng 12 2017 lúc 13:26

Ta có:\(7^0+7^1+7^2+...+7^{2011}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{2010}+7^{2011}\right)\)

\(=8+8.49+...+8.7^{2010}\)

\(=8\left(1+49+..+7^{2010}\right)⋮8\)

Vậy \(7^0+7^1+7^2+...+7^{2010}+7^{2011}⋮8\)

Bùi Thị Huyền
3 tháng 12 2017 lúc 13:27

= 7 mũ ko . 1 + 7 mũ 0 .7 ( tách 7 mũ 1 ) +.........+ 7 mũ 2010 .1 + 7 mũ 2010 . 7

= 7 mũ ko . ( 1+7 ) + 7 mũ 2 . ( 1 + 7 ) + ..... + 7 mũ 2010 . ( 1+ 7 )

= 7 mũ ko . 8 + 7 mũ 2 . 8 + .... + 7 mũ 2010 . 8 

= ( 7 mũ 0 + 7 mũ 2 + 7 mũ 4 + .... + 7 mũ 2008 + 7 mũ 2010 ) . 8 .... chia hết cho 8 

=> ( 7 mũ 0 + 7 mũ 1 + 7 mũ 2 + ..... 7 mũ 2010 + 7 mũ 2011 ) chia hết cho 8

Trần Lê Tiến Dũng
22 tháng 12 2018 lúc 19:59

7 mũ 0 +7 mũ 1 + 7 mũ 2 + ....... +7 mũ 2010 +7 mũ 2011

Chia hết cho 8 các bn nhé


Các câu hỏi tương tự
nguyenlengan
Xem chi tiết
Lê Minh Hiền
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Nguyễn Thị Tường Vy
Xem chi tiết
Nguyễn Phạm Linh Chi
Xem chi tiết
Nguyển Đức Triệu
Xem chi tiết
PHAN QUỐC BẢO
Xem chi tiết
Phạm Hoàng Khánh Ngọc
Xem chi tiết
Chippii
Xem chi tiết