Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2.
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2
Chứng minh rằng nếu 6a + 11b chia hết cho 31 khi và chỉ khi a + 7b chia hết cho 31
Chứng minh rằng tổng A = 2 + 21 + 22 +23+ 24 + ........... + 22014 chia hết cho ( - 6)
chứng minh rằng : (22002-4) chia hết cho 31
Chứng minh rằng :
a) 2^100+3^105 chia hết cho 15
b) 2^2002-4 chia hết cho 31
c)2^2008-8 chia hết cho 31
a) Cho A=1+5+52+53+...+52021
Chứng minh A ⋮ 31
b) chứng minh rằng tổng của 4 số tự nhiên không chia hết cho 4
Chứng minh rằng : 3x + y chia hết cho 31 thì 16x + 26 y chia hết cho 31
Cho A=2+2^2+2^3+2^4+....+2^99+2^100, chứng minh rằng A chia hết cho 3, A chia hết cho 6, A chia hết cho 31