chứng minh rằng
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2015\sqrt{2014}}\) <2
Chứng minh \(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+\frac{\sqrt{4}-\sqrt{3}}{7}+...+\frac{\sqrt{2015}-\sqrt{2014}}{4029}
RGBT:
E=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
Cho M=\(\frac{\sqrt{2}-\sqrt{1}}{1+1}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+\frac{\sqrt{4}-\sqrt{3}}{3+4}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}\)
Hãy so sánh M với 1/2
Tính:
\(A=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2014^2}+\frac{1}{2015^2}}\)
Chứng minh:\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2013\sqrt{2014}}\) <2
chứng minh A = \(\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)là số tự nhiên
Chuyên ĐHSP Hà Nội (2014)
4) Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng:
\(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ac+c+2}\le\frac{3}{4}\)
Chứng minh rằng
a, \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)\
Biết a,b,c là 3 số thự thỏa mãn điều kiện: a=b+1=c+2 và c>0
b, Biểu thức B=\(\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)có giá trị là 1 số nguyên