Chứng minh rằng số \(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là 1 nghiệm của phương trình \(x^4-16x^2+32=0\)
Chứng minh rằng số \(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)là một nghiệm của phương trình \(x^4-16x^2+32=0\)
Chứng minh \(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là nghiệm phương trình\(x^4-16x^2+32=0\)
Cho phương trình: \(x^4-16x^2+32=0\)(với \(x\in R\))
CMR: \(x=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)là 1 nghiệm của pt trên ?
Cho Xo=\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
CMR: Xo là nghiệm phương trình \(x^4-16x^2+32=0\)
\(CHỨNG\)\(MINH\)\(\)\(x=\sqrt{6-3\sqrt{2+\sqrt{3}}}\)\(-\sqrt{2+\sqrt{2+\sqrt{3}}}\)LÀ NGHIỆM CỦA PHƯƠNG TRÌNH \(X^4+16X^2+32=0\)GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP!!!!CÁM ƠN NHIỀU
Cho pt :\(x^4-16x^2+32=0\)
CMR x=\(\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\) là 1 nghiệm của pt
giải phương trình
1)\(\sqrt{9\left(x-1\right)}=21\)
2)\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
3)\(\sqrt{2x}-\sqrt{50}=0\)
4)\(\sqrt{4x^2+4x+1}=6\)
5)\(\sqrt{\left(x-3\right)^2}=3-x\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)