Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hàn Vũ Nhi

Chứng minh rằng : với n lẻ thì n = 2k + 1 ( k thuộc Z )

n3 + 3n2 - n - 3 chia hết cho 48

 

Nguyễn Tấn Phát
18 tháng 9 2019 lúc 14:12

Ta có: \(n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\text{ (1)}\)

\(\text{Vì n = 2k + 1 (số lẻ) nên }\hept{\begin{cases}n+3=2k+1+3=2k+4\\n-1=2k+1-1=2k\\n+1=2k+1+1=2k+2\end{cases}}\)

\(\text{(1) = }\left(2k+4\right)\left(2k\right)\left(2k+2\right)\)

\(=2.\left(k+2\right).2k.2.\left(k+1\right)\)

\(=8k.\left(k+2\right)\left(k+1\right)\)

\(\text{Ta thấy }8k\left(k+1\right)\left(k+2\right)\text{chia hết cho 2 và chia hết cho 8}\)

\(\text{Nên }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 16 (8 x 2 =16) (2)}\)

\(\text{Mà }k\left(k+1\right)\left(k+2\right)\text{ là tích của 3 số tự nhiện liên tiếp }\)

\(\text{Nên }k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3}\)

\(\text{Hay }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3 (3)}\)

\(\text{Từ (2) và (3) suy ra: }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 48 (16 x 3 = 48)}\)

                                \(\text{hay }n^3+3n^2-n-3\text{ chia hết cho 48 }\left(\text{ĐPCM}\right)\)

Nguyễn Linh Chi
18 tháng 9 2019 lúc 14:13

Ta có:

 \(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Với n=2k+1. Do đó ta có:

\(n^3+3n^2-n-3=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)=\left(2k+4\right)\left(2k+2\right)\left(2k\right)\)

\(=8\left(k+2\right)\left(k+1\right)k\)

Vì \(k;\left(k+1\right)\)là hai số tự nhiên liên tiếp => \(k\left(k+1\right)⋮2\)

Vì \(k;\left(k+1\right);\left(k+2\right)\)là ba số tự nhiên liên tiếp => \(k\left(k+1\right)\left(k+2\right)⋮3\)

mà (2; 3) =1

=> \(k\left(k+1\right)\left(k+2\right)⋮6\)

=> \(8k\left(k+1\right)\left(k+2\right)⋮48\)


Các câu hỏi tương tự
Nguyên Lê
Xem chi tiết
Hàn Vũ Nhi
Xem chi tiết
châu anh minh
Xem chi tiết
châu anh minh
Xem chi tiết
Mun SiNo
Xem chi tiết
Hoàng Hưng Đạo
Xem chi tiết
Linh Nhi
Xem chi tiết
super xity
Xem chi tiết
super xity
Xem chi tiết