Chứng minh rằng trong 2n - 1 số tự nhiên khác nhau luôn tìm được n số có tổng chia hết cho n (n nguyên dương)
Chứng minh rằng trong 2013 số tự nhiên n1,n2,....n2013 bất kì luôn tồn tại 1 số chia hết cho 2013 hoặc hữu hạn số khác nhau trong 2013 số có tổng chia hết cho 2013
Từ 8 chữ số 1; 2; 3; 4; 5; 6; 7; 8:
a) Lập số tự nhiên N nhỏ nhất có 8 chữ số khác nhau chia hết cho 1111;
b) Lập số tự nhiên M lớn nhất có 8 chữ số khác nhau chia hết cho 1111;
c) Lập được bao nhiêu số tự nhiên có 8 chữ số khác nhau chia hết cho 1111?
Bài 1: Chứng minh rằng ab(a2-b2)(4a2-b2) chia hết cho 5 với mọi số tự nhiên a,b.
Bài 2: Trong 100 số tự nhiên từ 1 đến 100 cần chọn n số (n>=2) sao cho 2 số phân biệt bất kì trong n số được chọn có tổng chia hết cho 6. Hỏi n lớn nhất có thể là bao nhiêu?
Cho số tự nhiên n thỏa mãn n(n+1)+6 không chia hết cho 3. Chứng minh rằng: 2n2+n+8 không phải là số chính phương.
giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1)+6 không chia hết cho 3. chứng minh rằng 2n^2+n+8 không là số chính phương
bài 1 : cho n là số tự nhiên lớn hơn 1 . Chứng minh rằng : n4+4n là hợp số
bài 2 : tìm số tự nhiên n sao cho 3n+55 là số chính phương
bài 3 : cho a+1 và 2a+1 ( n ( N ) đồng thời là hai số chính phương . Chứng minh rằng a chia hết cho 24
cho 2n+1 số nguyên , trong đó có đúng mốt số 0 và các số 1,2,3,...,n mỗi số xuất hiện 2 lần. chứng minh rằng với mọi số tự nhiên n ta luôn sắp xếp được 2n+1 số nguyên trên thành sao cho với mọi m=1,2,...,n có đúng m số nằm giữa hai số m
1,cho a và b là hai số tự nhiên nguyê tố cùng nhau với 3 và a+b chia hết cho 3. chứng minh rằng xa +xb+1 chia hết cho x2+x+1
2,cho f(x) là đa thức bậc lớn hơn 1 có các hệ số nguyên, m và n là hai số nguyên tố cùng nhau, chứng minh rằng
f( m+n) chia hết cho mn <=> f(m) chia hết cho n và f(n) chia hết cho m
ai làm hộ mik đi... nhanh dùm với các chế