Ta có: n(n+ 1)(n + 2) + 1011
+ n(n + 1)(n+2)
Vì trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Nên n(n + 1)(n+2) ⋮ 3
Mà 1011 ⋮ 3
⇒ n(n+ 1)(n + 2) + 1011 ⋮ 3
Vậy n(n+ 1)(n + 2) + 1011 là hợp số
Ta có: n(n+ 1)(n + 2) + 1011
+ n(n + 1)(n+2)
Vì trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Nên n(n + 1)(n+2) ⋮ 3
Mà 1011 ⋮ 3
⇒ n(n+ 1)(n + 2) + 1011 ⋮ 3
Vậy n(n+ 1)(n + 2) + 1011 là hợp số
Chứng minh rằng với mọi số tự nhiên n thì: n2 + n + 1 là số lẻ
Mình sẽ tick những bạn nhanh đúng nhé
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
Bài 1 : Chứng minh rằng : 1002013 + 2 chia hết cho 3
Bài 2 : Chứng minh rằng với mọi số tự nhiên n ta có tích ( n + 5 ) ( n + 6 ) là một số chẵn
Ai làm đúng và nhanh nhất thì mình tick cho
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
Chứng tỏ rằng: BCNN(n,37n+1)=37n^2+n với mọi số tự nhiên n Giúp mình với ạ
Chứng minh rằng (n+2010)(n+2013) là một số chẵn, với mọi số tự nhiên N
giúp mình nhanh nha
a. Cho số A = 101112131415...8586878889, chứng minh rằng số A chia hết cho 9.
b. Chứng tỏ rằng với mọi số tự nhiên n thì: 7n + 8 và 8n + 9 là 2 số nguyên tố cùng nhau.
giải giúp mình với ạ
bài 4
a) chứng minh rằng với mọi n thì 2n^2 +2n +3 ko là số chính phương
b)chứng minh rằng với mọi số tự nhiên n thì 3^n + 1002 ko là số chính phương
các bạn trình bày ra giúp mình nhé