Bài 1: chứng minh với mọt số tự nhiên n khác 0 ta đều có:
a) 1/2.5+1/5.8+1/8.11+...+1/(3n-1).(3n+2)=n/6n+4
b) 5/3.7+5/7.11+5/11.15+...+5/(4n-1).(4n+3)=5n/12n+9
Chứng minh rằng:
a,\(\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{\left(4n-1\right).\left(4n+3\right)}=\frac{5n}{3.\left(4n+3\right)}\)
b,\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}< \frac{1}{4}\)
CMR A=5/3.7+5/7.11+...+5/(4n-1).(4n+3)=5n/4n+3
giải giúp với đang cần gấp
5/3.7 + 5/7.11 + 5/11.15 +...+ 5/(4n-1).(4n+3) = 5n/4n + 3
Chú ý: dấu '/' là ngăn cách giữa tử số và mẫu số
CM với mọi số tự nhiên khác 0 ta đều có
a) 1/2x5+1/5x8+1/8x11+...+1/(3n-1)x(3n+2)=n/6n+4
b) 5/3x7+5/7x11+5/11x15+...+5/(4n-1)x(4n+3)=5n/4n+3
Chứng minh:
\(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)\(=\frac{5n}{4n+3}\)
\(CMR:\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}=\frac{5n}{4n+3}\)
Chứng minh rằng với mọi số tự nhiên n ta có 24n+1 +3 chia hết cho 5
Hãy chứng tỏ rằng với mọi n là số tự nhiên khác 0 thì:
a) Mọi số nguyên tố lớn hơn 2 đều có dạng 4n+1 hoặc 4n+3
b) Mọi số nguyên tố lớn hơn 3 đều có dạng 6n+1 hoặc 6n+5