Ta có: n(2n−3)−2n(n+1)n(2n−3)−2n(n+1) = 2n2−3n−2n2−2n2n2−3n−2n2−2n
= −5n−5n
Vì −5⋮5−5⋮5 => -5n ⋮⋮ 5
=> n(2n−3)−2n(n+1)n(2n−3)−2n(n+1) ⋮⋮ 5 với mọi n ∈∈ Z
Ta có: n(2n−3)−2n(n+1)n(2n−3)−2n(n+1) = 2n2−3n−2n2−2n2n2−3n−2n2−2n
= −5n−5n
Vì −5⋮5−5⋮5 => -5n ⋮⋮ 5
=> n(2n−3)−2n(n+1)n(2n−3)−2n(n+1) ⋮⋮ 5 với mọi n ∈∈ Z
Các bạn ơi giúp mình giải bài toán này nhé !
P/s: Nhớ giải chi tiết giùm mình nhé (Thanks!!!!)
a) chứng minh rằng với mọi số nguyên n thì :(n^2-3n+1)(n+2)-n^3+2 chia hết cho 5
b) chứng minh rằng với mọi số nguyên n thì: (6n+1)(n+5)-(3n+5)(2n-10) chia hết cho 2
Chứng minh rằng với mọi số nguyên n thì
(n2+3n-1)(n+2)-n3+2 chia hết cho 5
n(n+5)-(n-3)(n+2) chia hết cho 6
(n-1)(n+1)-(n-7)(n-5) chia hết cho 12
Chứng minh rằng với mọi số nguyên n thì (2 - n) ( n2 - 3n + 1) + n (n2 + 12 )+ 8 chia hết cho 5
chứng minh rằng với mọi số nguyên n thì
(6n+1)(n+5)-(3n+5)(2n-1) chia hết cho 2
1/ Chứng minh n5-5n3+4n chia hết cho 120 với mọi số nguyên n
2 / Chứng minh rằng n3+3n2+n+3 chia het chi 48 với mọi số lẽ n
3/ CMR n^4+4n3-4n2-16n chia hết cho 384 với mọi số nguyên n
chứng minh rằng biểu thức : n (3n - 1) - 3n(n - 2) luôn chia hết cho 5 với mọi số nguyên n
1 a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.
b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.
a/ Chứng minh ới mọi số nguyên \(n\)thì: \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
b/ Chứng minh với mọi số nguyên \(n\)thì: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)chia hết cho 2
chứng minh rằng (3n+7)^2 -(2n+3)^2 chia hết cho 5 với mọi số nguyên n