Chứng minh rằng \(\left(n^2+n-1\right)^2-1\) chia hết cho 24 với mọi số nguyên n
Chứng minh rằng với mọi số nguyên n, ta có
a) \(n^3+3n^2+2n\) chia hết cho 6
b) \(\left(n^2+n-1\right)^2-1\)chia hết cho 24
Chứng minh rằng với mọi số nguyên n
\(\left(n^2+n-1\right)^2\)chia hết cho 24
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
a/ Chứng minh ới mọi số nguyên \(n\)thì: \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
b/ Chứng minh với mọi số nguyên \(n\)thì: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)chia hết cho 2
Giúp mình với:chứng minh rằng với mọi số nguyên tố n, ta có:
a) (n+3)^2-(n-1)^2 chia hết cho 8
b) (n+6)^2-(n-6)^2 chia hết cho 24
Bài 5 : Chứng minh rằng
a)\(\left(n+3\right)^2-\left(n-1\right)^2\) chia hết cho 8 với mọi n ∈ N
b) A = \(\frac{n^5}{120}+\frac{n^4}{12}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\) có giá trị nguyên với mọi n ∈ Z
Chứng minh rằng:a)\(\left(n^2+n-1\right)^2-1\) chia hết cho 24 với mọi số nguyên
b)\(n^3+6n^2+8n\)chia hết cho 48 với mọi số chẵn n
(Đề thi HSG huyện Lộc Hà-Hà Tĩnh 2010-2011)
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi nguyên n.