10^n tan cung la 1 ...
18n - 1 chia het cho 9, tan cung la -1 ...
=> 1 + (-1) = 0 chia het cho 27
Hieu thi tu lam
Khong hieu thi ke :D
10^n tan cung la 1 ...
18n - 1 chia het cho 9, tan cung la -1 ...
=> 1 + (-1) = 0 chia het cho 27
Hieu thi tu lam
Khong hieu thi ke :D
chứng minh rằng với mọi số nguyên n thì n^2 + n +2 không chia hết cho 3
Chứng minh rằng với mọi n nguyêng dương thì \(3^n-1\) không chia hết cho 8
Chứng minh rằng \(n^6+n^4-2n^2\) chia hết cho 72 với mọi số nguyên n
Chứng minh rằng \(5n^3+15n^2+10n\)luôn luôn chia hết cho 30 với mọi n là số nguyên
Cho biểu thức :
A = a (a+1) (a+2) (a+4) (a+5) (a+6) + 36
Chứng minh rằng với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương.
Với mỗi số thực a, ta gọi phần nguyên không vượt quá a là số nguyên lớn nhất không vượt quá a và ký hiệu là [a]. Chứng minh rằng với mọi n nguyên dương ta luôn có
\(\left[\frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}\right]=n\)
Bài 1: Chứng minh rằng
a)a^5-a chia hết cho5
b) n^3+6n^2+8n chia hết cho 48 với mọi n chẵn
c) Cho a là số nguyên tố hớn hơn 3. CMR a^-1 chia hết cho 24
d) Nếu a+b+c chia hết cho 6 thì a^3+b^3+c^3 chia hết cho 6
e)2009^2010 không chia hết cho 2010
f) n^2+7n+22 không chia hết cho 9
chứng minh rằng:(2n+5)^2-25 chia hết cho 4 với mọi số nguyên n.
các bn giải giùm mk mk cần gấp!
cảm ơn các bn!
Chứng minh với mọi n\(\in\)N* thì n3+n+2 là hợp số