Chứng minh : Với mọi n thuộc Z ta có :
a) \(n^2\left(n-1\right)\)chia hết cho 12
b)\(n^2\left(n^4-1\right)\) chia hết cho 60
c) \(n^5-n\) chia hết cho 30
d) \(2n\left(16-n^4\right)\) chia hết cho 30.
chứng minh rằng với mọi n nguyên dương ta có :
a, ( n + 1 ) ( n + 4 ) chia hết cho 2
b, n^3 + 11n chia hết cho 6
c , n(n+1)(2n+1) chia hết cho 3
d, n(n+1)(n+2) chia hết cho 6
Chứng minh rằng với mọi số nguyên m và n ta có 4mn(m^2 – n^2) chia hết cho 24
làm ntn z mn
Chứng minh rằng với mọi số nguyên n thì A=n(n+1)(2n+1) chia hết cho 6
Chứng minh rằng với mọi n \(\in\) Z, ta có số: An = n2 + n + 1 không chia hết cho 9.
a) Chứng minh rằng: [ n2 (n + 1) + 2n(n + 1)] chia hết cho 6 với mọi n thuộc Z
b) Cho a+b+c + 0. Chứng minh rằng a^3 + b^3 + c^3 + 3abc
Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2 + 4 và n2 +16 là các số nguyên tố thì n chia hết cho 5.
Bài 1)a)Chứng minh rằng: với mọi số nguyên n ta luôn có: \(\left(n^3-n\right)\)chia hết cho 6
b)Với mọi số nguyên n ta luôn có \(\left(n^5-n\right)\)chia hết cho 30
c)cho a,b,c là các số nguyên. CMR \(\left(a^3+b^3+c^3\right)\)chia hết cho 6 <=> (a+b+c) chia hết cho 6
Chứng minh rằng với mọi số tự nhiên n ta có:
n^2-n chia hết cho 2