1.Tìm n thuộc N để 3n+2 và 2n+3 nguyên tố cùng nhau
2.Chứng minh:Ước chung lớn nhất của 5a+3b và 13a+8b=Ước chung lớn nhất(a,b)với mọi a,b thuộc N
B1
a) Tìm ước chung của n+1; 3n+2(n thuộc N)
b) Tìm ước chung của 2n+3 và 3n+4 (n thuộc N)
B2 Biết rằng 2 số 5n+6 và 8n+7 không phải là 2 số nguyên tố cùng nhau. tìm ước chung lớn nhất ( 5n+6; 8n+7) n thuộc N
chứng minh rằng : 2n+3 và 4n +8 là hai số nguyên tố cùng nhau
tìm số tự nhiên n để các ố sâu nguyên tố cùng nhau 18n + 3 và 21n +7
Chứng minh rằng : với n thuộc N THÌ các số sau là hai số nguyên tố cùng nhau
a) n+1 va 2n+3
b) 2n+3 va 4n+8
c) 7n+10 va 5n +7
d) 14n+3 và 21n +4
Bài 6 : Chứng minh rằng các số sau đây nguyên tố cùng nhau:
a, 2 số lẻ liên tiếp
b,2n+5 và 3n+7
Bài 7 :Cho ƯCLN (a;b) = 1. CMR
a, ước chung lớn nhất của a và a - b bằng 1
b, a.b và a+b có ước chung lớn nhất bằng 1.
Bài 8 :Cho a,b là 2 số tự nhiên khác 0 không nguyên tố cùng nhau
a=4n+3;b=5n+1 (n thuộc N)
Tìm ước chung lớn nhất của a và b
chứng minh rằng với mọi n thuộc N thì 2n+1 và 4n+3 là hai số nguyên tố cùng nhau
a)Chứng minh rằng :n thuộc N thì 2n+3 và 4n+8 là hai số nguyên tố cùng nhau
b)Tìm số tự nhiên n lớn nhất có 3 chữ số sao cho n chia cho 8 thì dư 7,chia cho 31 thì dư 28
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.