Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoàn Văn Toàn

chứng minh rằng tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

Không Tên
20 tháng 8 2018 lúc 20:55

Gọi 3 số nguyên liên tiếp là:  \(a-1;\)\(a;\)\(a+1\)

Tổng các lập phương của 3 số nguyên liên tiếp là:

     \(A=\left(a-1\right)^3+a^3+\left(a+1\right)^3=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)

\(=3a\left(a^2+1\right)=3a\left(a^2-1+3\right)=3a\left(a^2-1\right)+9a\)

\(=3\left(a-1\right)a\left(a+1\right)+9a\)

Nhận thấy:  \(\left(a-1\right)a\left(a+1\right)\)là tích của 3 số nguyên liên tiếp => chia hết cho 3 

=>  \(3\left(a-1\right)a\left(a+1\right)\)chia hết cho 9;    9a chia hết cho 9

=>   A  chia hết cho 9

Doraemon
25 tháng 9 2018 lúc 17:40

Gọi \(3\) số nguyên liên tiếp lần lượt là: \(\left(a-1\right);a;\left(a+1\right)\)

Chứng minh: \(\left(a-1\right)^3+a^3+\left(a+1\right)^3\) chia hết cho \(9\).

\(\left(a-1\right)^3+a^3+\left(a+1\right)^3\)

\(=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)

\(=3a^3+6a\)

\(=3a\left(a^2+2\right)\)

\(=3a\left(a^2-1\right)+9a\)

\(=3\left(a-1\right)a\left(a+1\right)+9a\)

Vì tích của \(3\) số tự nhiên liên tiếp chia hết cho 3 nên \(3\left(a-1\right)a\left(a+1\right)\) chia hết cho \(9\).

Mặt khác \(9a\) chia hết cho \(9\) nên:

\(\Rightarrow3\left(a-1\right)a\left(a+1\right)+9a\)

Huỳnh Quang Sang
23 tháng 7 2019 lúc 16:05

Ba số nguyên liên tiếp là n,n+1,n+2,ta phải chứng minh:

\(A=n^3+\left[n+1\right]^3+\left[n+2\right]^3⋮9\)

Ta có \(A=n^3+\left[n+1\right]^3+\left[n+2\right]^3=3n^3+9n^2+15n+9\)

\(=3n^3-3n+18n+9n^2+9=3n\left[n-1\right]\left[n+1\right]+18n+9+9n^2\)

n,n-1,n+1 là ba số nguyên liên tiếp,trong đó một số chia hết cho 3

Vậy \(B=3n\left[n-1\right]\left[n+1\right]⋮9;C=18n+9n^2+9⋮9\)

A = B + C mà \(B⋮9,C⋮9\Rightarrow A⋮9\)


Các câu hỏi tương tự
Sơn Lê
Xem chi tiết
Lê Mỹ Hạnh
Xem chi tiết
Phạm Đức Long
Xem chi tiết
Sinh Bùi
Xem chi tiết
Nguyễn Quỳnh Trang
Xem chi tiết
Nguyễn Thị Quỳnh Anh
Xem chi tiết
nguyen huynh uyen nhi
Xem chi tiết
Trịnh Hoàng Oanh
Xem chi tiết
Nguyễn Thị Quỳnh Anh
Xem chi tiết