Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tô trần vân nhi

Chứng minh rằng tích của 4 số tự nhiên liên tiếp cộng thêm 1 là số chính phương

Nguyễn Xuân Anh
4 tháng 10 2018 lúc 21:56

Đặt 4 số tự nhiên liên tiếp là: n-1;n;n+1;n+2( n>0)

Ta có:

\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)+1=\left(n^2+n\right)\left(n^2+n-2\right)+1.\)

Gọi t = n2+n ta có:

\(t\left(t-2\right)+1=t^2-2t+1=\left(t-1\right)^2\)

                                                      \(=\left(n^2+n\right)^2\left(ĐPCM\right)\)

\(\text{Vậy ..........}\)

ST
4 tháng 10 2018 lúc 21:57

Gọi 4 stn liên tiếp là x;x+1;x+2;x+3 (x thuộc N)

Đặt A=\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

Đặt x2+3x+1=t, ta có:

\(A=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+3x+1\right)^2\)

=>đpcm

Trần Thùy Dương
4 tháng 10 2018 lúc 22:05

Gọi tích của 4 số tự nhiên đó là A .  

Ta có :

\(A+1=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\)

Vậy tích của 4 số tự nhiên liên tiếp là 1 số chính phương (đpcm)


Các câu hỏi tương tự
tfboys
Xem chi tiết
Công chúa thủy tề
Xem chi tiết
Đức Lộc
Xem chi tiết
Hollow Ichigo
Xem chi tiết
WoflGang
Xem chi tiết
baek huyn
Xem chi tiết
thu mai
Xem chi tiết
loan cao thị
Xem chi tiết
Trần Khánh Châu
Xem chi tiết