Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
koro_sensei

Chứng minh rằng tích của 4 số tự nhiên liên tiếp cộng 1 là số chính phương

Nguyễn Tuấn Tài
4 tháng 1 2016 lúc 19:56

Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2

Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 =  (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n+ 2)

 Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25 

vì n2 + 2 không chia hết cho 5 (do n2 có thể  tận cùng là 0;1;4;5;6;9 )

=> 5.(n+ 2) không là số chính phương => đpcm

Sakura
4 tháng 1 2016 lúc 19:57

 ta có: (n-1)n(n+1)(n+2) +1=[n(n+1)][(n-1)(n+2)] +1
=(n^2 +n)(n^2 +n -2) +1 (*) 
Đặt n^2 +n =a 
(*)<=> a(a-2) +1= a^2 -2a+1= (a-1)^2 là số chính phương 
=>điều phải chứng minh 

tiểu ngư nhi
4 tháng 1 2016 lúc 20:05

gọi 4 số đó là a,a+1,a+2,a+3

theo bài ra ta có

a(a+1).(a+2).(a+3)+1

nhóm a với a+1,a+2 với a+3 ta được: (a2+3a)(a2+3a+2)+1

đặt a2+3a+1=y => a2+3a=y-1; a2+3a+2=y2-1+1=y(đpcm)

ta có (.(y+1)(y-1)+1=y2


Các câu hỏi tương tự
trần Thị chi
Xem chi tiết
dryfgjhkjz
Xem chi tiết
Đức Lê
Xem chi tiết
Nguyễn Thanh Hà
Xem chi tiết
Jungkookie
Xem chi tiết
Nguyễn Hoàng Tú
Xem chi tiết
Nguyễn Minh Thương
Xem chi tiết
Phương Thảo
Xem chi tiết
gorosuke
Xem chi tiết