1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Chứng Minh rằng (4a-3)^2-(3a-4)^2 luôn luôn chia hết ch 7 với mọi số nguyên a
chứng minh rằng với mọi số nguyên a
a^4 + 6a^3 + 11a^2 + 6a chia hết cho 24
a^5 - 5a^3 + 4a chia hết cho 120
3a^4 -14a^3 + 21a^2 -10a chia hết cho 24
Chứng minh rằng:
1) (2n – 3)^2 – 9 chia hết cho 4 với mọi số nguyên n
2) a^4 - 2a^3 – a^2 + 2a chia hết cho 24 với a là số nguyên
1. Chứng minh rằng m^3-13m chia hết cho 6 với mọi m thuộc z
2. Không dùng máy tính bỏ túi, cmr: 685^3+315^3 chia hết 25000
3.CMR: A=75.(4^1975+4^1974+...+4^2+5)+25 chia hết cho 4^1976
4. CMR:a^5-a chia hết cho 5 với mọi số nguyên a
5. a^4-b^4 chia hết cho 5 với mọi số nguyên a,b
Cho các số nguyên a,b,c khác 0 thỏa mãn điều kiện: \(\frac{5b+2c\left(4+c^6\right)}{a+b+c}=1\)
Chứng minh rằng: a7+3b7-2c chia hết cho 7
Mọi người giúp mình bài này với
Bài 1 : (a+b)^2 = 2(a+b)^2. Chứng minh rằng a= b
Bài 2: Cho a^2 - b^2= 4c^2. Chứng minh rằng (5a-3b+8c) (5a-3b-8c) = (3a-5b)
Bài 3 : Cho x +y = 1. Tính giá trị của x^3 +y^3+ 3xy
Bài 4: Cho x-y = 1. Tính giá trị của x^3-y^3- 3xy
Chứng Minh với mọi số nguyên a
Câu 1: (a^4 +6a^3 + 11a^2 +6a) chia hết cho 24
Câu 2: (a^5 - 5a^3 + 4a) chia hết cho 120
Câu 3: (3a^4 -14a^3 +21a^2 - 10a) chia hết cho 24
Chứng minh rằng :
1.(2n-3)2-9 chia hết cho 4 với mọi số nguyên n
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
3.a4-2a3-a2+2a chia hết cho 24 với a là số nguyên
4.n3-n chia hết cho 6 với mọi số nguyên n